

SBpipe documentation

	User manual
	Metadata

	Introduction

	Installation
	Requirements

	Installation on GNU/Linux
	Install COPASI

	Install LaTeX

	Install SBpipe via Miniconda3

	Install SBpipe manually

	Installation on Windows
	Install MINGW

	Installation of COPASI

	Installation of LaTeX

	Install SBpipe via Miniconda3

	Install SBpipe manually

	Test SBpipe

	How to use SBpipe
	Run SBpipe natively
	Pipeline configuration files

	Run SBpipe via Snakemake

	Configuration for the mathematical models
	COPASI models

	Python wrapper executing models coded in any language

	How to report bugs or request new features

	Developer manual
	Introduction

	Package structure
	docs

	sbpipe
	pl

	report

	simul

	tasks

	utils

	scripts

	tests

	Development model
	Conventions

	Work flow

	New releases
	How to release a new tag

	How to release a new SBpipe conda package (Anaconda Cloud)

	Miscellaneous of useful commands
	Git

	Source code
	Python modules

Indices

	Index

	Module Index

	Search Page

User manual

Metadata

Copyright © 2015-2018, Piero Dalle Pezze and Nicolas Le Novère.

SBpipe and its documentation are released under the GNU Lesser General Public License v3 (LGPLv3).
A copy of this license is provided with the package and can also be found here:
https://www.gnu.org/licenses/lgpl-3.0.txt.

Contacts: Dr Piero Dalle Pezze (piero.dallepezze AT gmail.com) and
Dr Nicolas Le Novère (lenov AT babraham.ac.uk)

Affiliation: The Babraham Institute, Cambridge, CB22 3AT, UK

Mailing list: sbpipe AT googlegroups.com

Forum: https://groups.google.com/forum/#!forum/sbpipe

Citation: Dalle Pezze, P and Le Novère, N. (2017) BMC Systems Biology 11:46. SBpipe: a collection of pipelines for automating repetitive simulation and analysis tasks.
https://doi.org/10.1186/s12918-017-0423-3

Introduction

The rapid growth of the number of mathematical models in Systems Biology fostered the
development of many tools to simulate and analyse them. The reliability and precision
of these tasks often depend on multiple repetitions and they can be optimised if executed
as pipelines. In addition, new formal analyses can be performed on these repeat sequences,
revealing important insights about the accuracy of model predictions.
SBpipe allows users to automatically repeat the tasks of model simulation and parameter estimation,
and extract robustness information from these repeat sequences in a solid and consistent manner,
facilitating model development and analysis.

Installation

Requirements

In order to use SBpipe, the following packages must be installed:

	Python 2.7+ or 3.4+ - https://www.python.org/

	R 3.3.0+ - https://cran.r-project.org/

SBpipe can work with the simulators:

	COPASI 4.19+ - http://copasi.org/ (for model
simulation, parameter scan, and parameter estimation)

	Python (directly or as a wrapper to call models coded in any programming language)

If LaTeX/PDF reports are also desired, the following package must also
be installed:

	LaTeX 2013+

Installation on GNU/Linux

Install COPASI

As of 2016, COPASI is not available as a package in GNU/Linux distributions. Users must add the path to COPASI
binary files manually editing the GNU/Linux $HOME/.bashrc file as follows:

Path to CopasiSE (update this accordingly)
export PATH=$PATH:/path/to/CopasiSE/

The correct installation of CopasiSE can be tested with:

Reload the .bashrc file
source $HOME/.bashrc

CopasiSE -h
> COPASI 4.19 (Build 140)

Install LaTeX

Users are recommended to install LaTeX/texlive using the package manager of their GNU/Linux distribution.
On GNU/Linux Ubuntu machines the following package is required:

texlive-latex-base

The correct installation of LaTeX can be tested with:

pdflatex -v
> pdfTeX 3.14159265-2.6-1.40.16 (TeX Live 2015/Debian)
> kpathsea version 6.2.1
> Copyright 2015 Peter Breitenlohner (eTeX)/Han The Thanh (pdfTeX).

Install SBpipe via Miniconda3

Users need to download and install Miniconda3 (https://conda.io/miniconda.html).

1st Method

This method creates a new environment and installs SBpipe dependencies in this environment.
SBpipe is installed locally, enabling an easy access to the package documentation and test suite.

download SBpipe
wget https://github.com/pdp10/sbpipe/tarball/master
or clone it from GitHub
git clone https://github.com/pdp10/sbpipe.git

move to sbpipe folder
cd path/to/sbpipe

install the dependencies within an isolated Miniconda3 environment
conda env create --name sbpipe --file environment.yaml

activate the environment.
For recent versions of conda, replace `source` with `conda`.
source activate sbpipe

To run sbpipe from any shell, users need to add 'sbpipe/scripts' to their PATH environment variable by
adding the following lines to their $HOME/.bashrc file:

SBPIPE (update accordingly)
export PATH=$PATH:/path/to/sbpipe/scripts

The .bashrc file should be reloaded to apply the previous edits:

Reload the .bashrc file
source $HOME/.bashrc

2nd Method

This method installs SBpipe as a conda package in a dedicated conda environment:

create a new environment `sbpipe`
conda create -n sbpipe

activate the environment.
For recent versions of conda, replace `source` with `conda`.
source activate sbpipe

install sbpipe and its dependencies (including sbpiper)
conda install sbpipe -c pdp10 -c conda-forge -c fbergmann -c defaults

Install SBpipe manually

For this type of installation, SBpipe must be downloaded from the website or cloned using git.

download SBpipe
wget https://github.com/pdp10/sbpipe/tarball/master
or clone it from GitHub
git clone https://github.com/pdp10/sbpipe.git

Users need to make sure that the package python-pip and r-base are installed.
The correct installation of Python and R can be tested by running the commands:

python -V
> Python 3.6.4
pip -V
> pip 9.0.1 from /home/ariel/.local/lib/python3.6/site-packages (python 3.6)

R --version
> R version 3.4.1 (2017-06-30) -- "Single Candle"
> Copyright (C) 2017 The R Foundation for Statistical Computing
> Platform: x86_64-pc-linux-gnu (64-bit)

The next step is the installation of SBpipe dependencies.
To install Python dependencies on GNU/Linux, run:

cd path/to/sbpipe
./install_pydeps.py

To install SBpipe R dependencies on GNU/Linux, run:

cd path/to/sbpipe
R
>>> # Inside R environment, answer 'y' to install packages locally
>>> source('install_rdeps.r')

Finally, to run sbpipe from any shell, users need to add 'sbpipe/scripts' to their PATH environment variable by
adding the following lines to their $HOME/.bashrc file:

SBPIPE (update this accordingly)
export PATH=$PATH:/path/to/sbpipe/scripts

The .bashrc file should be reloaded to apply the previous edits:

Reload the .bashrc file
source $HOME/.bashrc

NOTES:

	If R package dependencies must be compiled, it is worth checking that the following
additional packages are installed in your machine: build-essential, liblapack-dev,
libblas-dev, libcairo-dev, libssl-dev, libcurl4-openssl-dev, and gfortran.
These can be installed using the package manager coming with your distribution. Other
packages might be needed, depending on R dependencies. After installing these packages,
install_rdeps.r must be executed again.

	If Python bindings for COPASI are installed, SBpipe automatically checks whether the
COPASI model can be loaded and executed, before generating the data. As of January 2018,
this code is released for Python 2.7 and Python 3.6 on the COPASI website and Anaconda Cloud.
The installation of SBpipe via Miniconda3 automatically installs this dependency.

Installation on Windows

Install MINGW

We advise users to install Git for Windows https://git-for-windows.github.io/ as
a simple Shell (MINGW) running on Windows. Leave the default setting during installation.

Installation of COPASI

Windows users need to install the Windows versions of COPASI from the COPASI website.
Once Git for Windows is started, a Shell-like window appears and enables users to run commands.
A .bashrc file must be created and configured:

touch .bashrc
wordpad .bashrc

A Wordpad window should be visible, loading the file .bashrc . The following lines must be
copied into this file:

#!/bin/bash/

COPASI (update this accordingly. Use \ to escape spaces)
export PATH=/path/to/copasi/bin/:$PATH

Installation of LaTeX

Windows users need to install LaTeX MikTeX https://miktex.org/.

Install SBpipe via Miniconda3

See GNU/Linux.

Install SBpipe manually

Start Git for Windows and clone SBpipe from GitHub using the command:

git clone https://github.com/pdp10/sbpipe.git

We now need to set up the path to SBpipe:

wordpad .bashrc

The following lines must be appended to this file:

SBPIPE
export PATH=$PATH:~/sbpipe/scripts

Save the file and close wordpad. Now you should reload the .bashrc file to apply the previous changes:

Reload the .bashrc file
source $HOME/.bashrc

Python and R dependencies should be installed as explained in the corresponding section
for GNU/Linux section.

Test SBpipe

The correct installation of SBpipe and its dependencies can be verified by running the following commands.
For the correct execution of all tests, LaTeX must be installed.

SBpipe version:
sbpipe -V
> sbpipe 4.6.0

run model simulation using COPASI (see results in tests/copasi_models):
cd path/to/sbpipe/tests
nosetests test_copasi_sim.py --nocapture --verbose

run all tests:
nosetests test_suite.py --nocapture --verbose

generate the manuscript figures (see results in tests/insulin_receptor):
nosetests test_suite_manuscript.py --nocapture --verbose

How to use SBpipe

SBpipe pipelines can be executed natively or via Snakemake, a dedicated and more advanced tool
for running computational pipelines.

Run SBpipe natively

SBpipe is executed via the command sbpipe. The syntax for this
command and its complete list of options can be retrieved by running sbpipe -h.
The first step is to create a new project. This can be done with the
command:

sbpipe --create-project project_name

This generates the following structure:

project_name/
 | - Models/
 | - Results/
 | - (store configuration files here)

Mathematical odels must be stored in the Models/ folder. COPASI data sets used by a model
should also be stored in Models. To run SBpipe, users need to create a configuration file
for each pipeline they intend to run (see next section). These configuration
files should be placed in the root project folder. In Results/ users
will eventually find all the results generated by SBpipe.

Each pipeline is invoked using a specific option (type sbpipe -h for the complete command set):

runs model simulation.
sbpipe -s config_file.yaml

runs parameter estimation.
sbpipe -e config_file.yaml

runs single parameter scan.
sbpipe -p config_file.yaml

runs double parameter scan
sbpipe -d config_file.yaml

Pipeline configuration files

Pipelines are configured using files (here called configuration files).
These files are YAML files.
In SBpipe each pipeline executes four tasks: data generation, data
analysis, report generation, and tarball generation. These tasks can be activated in each
configuration files using the options:

	generate_data: True

	analyse_data: True

	generate_report: True

	generate_tarball: False

The generate_data task runs a simulator accordingly to the options in
the configuration file. Hence, this task collects and organises the reports
generated from the simulator. The analyse_data task processes the reports
to generate plots and compute statistics. The generate_report
task generates a LaTeX report containing the computed plots and invokes the
utility pdflatex to produce a PDF file. Finally, generate_tarball creates
a tar.gz file of the results. By default, this is not executed. This modularisation
allows users to analyse the same data without having to re-generate it, or to skip the
report generation if not wanted.

Pipelines for parameter estimation or stochastic model simulation can be
computationally intensive. SBpipe allows users to generate simulated data
in parallel using the following options in the pipeline configuration file:

	cluster: "local"

	local_cpus: 7

	runs: 250

The cluster option defines whether the simulator should be executed
locally (local: Python multiprocessing), or in a computer cluster (sge: Sun Grid
Engine (SGE), lsf: Load Sharing Facility (LSF)). If local is selected, the
local_cpus option determines the maximum number of CPUs to be allocated for
local simulations. The runs option specifies the number of simulations
(or parameter estimations for the pipeline param_estim) to be run.

Assuming that the configuration files are placed in the root directory
of a certain project (e.g. project_name/), examples are given as follow:

Example 1: configuration file for the pipeline simulation

True if data should be generated, False otherwise
generate_data: True
True if data should be analysed, False otherwise
analyse_data: True
True if a report should be generated, False otherwise
generate_report: True
True if a zipped tarball should be generated, False otherwise
generate_tarball: False
The relative path to the project directory
project_dir: "."
The name of the configurator (e.g. Copasi, Python)
simulator: "Copasi"
The model name
model: "insulin_receptor_stoch.cps"
The cluster type. local if the model is run locally,
sge/lsf if run on cluster.
cluster: "local"
The number of CPU if local is used, ignored otherwise
local_cpus: 7
The number of simulations to perform.
n>: 1 for stochastic simulations.
runs: 40
An experimental data set (or blank) to add to the
simulated plots as additional layer
exp_dataset: "insulin_receptor_dataset.csv"
True if the experimental data set should be plotted.
plot_exp_dataset: True
The alpha level used for plotting the experimental dataset
exp_dataset_alpha: 1.0
The label for the x axis.
xaxis_label: "Time [min]"
The label for the y axis.
yaxis_label: "Level [a.u.]"

Example 2: configuration file for the pipeline single parameter scan

True if data should be generated, False otherwise
generate_data: True
True if data should be analysed, False otherwise
analyse_data: True
True if a report should be generated, False otherwise
generate_report: True
True if a zipped tarball should be generated, False otherwise
generate_tarball: False
The relative path to the project directory
project_dir: "."
The name of the configurator (e.g. Copasi, Python)
simulator: "Copasi"
The model name
model: "insulin_receptor_inhib_scan_IR_beta.cps"
The variable to scan (as set in Copasi Parameter Scan Task)
scanned_par: "IR_beta"
The cluster type. local if the model is run locally,
sge/lsf if run on cluster.
cluster: "local"
The number of CPU if local is used, ignored otherwise
local_cpus: 7
The number of simulations to perform per run.
n>: 1 for stochastic simulations.
runs: 1
The number of intervals in the simulation
simulate__intervals: 100
True if the variable is only reduced (knock down), False otherwise.
ps1_knock_down_only: True
True if the scanning represents percent levels.
ps1_percent_levels: True
The minimum level (as set in Copasi Parameter Scan Task)
min_level: 0
The maximum level (as set in Copasi Parameter Scan Task)
max_level: 100
The number of scans (as set in Copasi Parameter Scan Task)
levels_number: 10
True if plot lines are the same between scans
(e.g. full lines, same colour)
homogeneous_lines: False
The label for the x axis.
xaxis_label: "Time [min]"
The label for the y axis.
yaxis_label: "Level [a.u.]"

Example 3: configuration file for the pipeline double parameter scan

True if data should be generated, False otherwise
generate_data: True
True if data should be analysed, False otherwise
analyse_data: True
True if a report should be generated, False otherwise
generate_report: True
True if a zipped tarball should be generated, False otherwise
generate_tarball: False
The relative path to the project directory
project_dir: "."
The name of the configurator (e.g. Copasi, Python)
simulator: "Copasi"
The model name
model: "insulin_receptor_inhib_dbl_scan_InsulinPercent__IRbetaPercent.cps"
The 1st variable to scan (as set in Copasi Parameter Scan Task)
scanned_par1: "InsulinPercent"
The 2nd variable to scan (as set in Copasi Parameter Scan Task)
scanned_par2: "IRbetaPercent"
The cluster type. local if the model is run locally,
sge/lsf if run on cluster.
cluster: "local"
The number of CPU if local is used, ignored otherwise
local_cpus: 7
The number of simulations to perform.
n>: 1 for stochastic simulations.
runs: 1
The simulation length (as set in Copasi Time Course Task)
sim_length: 10

Example 4: configuration file for the pipeline parameter estimation

True if data should be generated, False otherwise
generate_data: True
True if data should be analysed, False otherwise
analyse_data: True
True if a report should be generated, False otherwise
generate_report: True
True if a zipped tarball should be generated, False otherwise
generate_tarball: False
The relative path to the project directory
project_dir: "."
The name of the configurator (e.g. Copasi, Python)
simulator: "Copasi"
The model name
model: "insulin_receptor_param_estim.cps"
The cluster type. local if the model is run locally,
sge/lsf if run on cluster.
cluster: "local"
The number of CPU if local is used, ignored otherwise
local_cpus: 7
The parameter estimation round which is used to distinguish
phases of parameter estimations when parameters cannot be
estimated at the same time
round: 1
The number of parameter estimations
(the length of the fit sequence)
runs: 250
The threshold percentage of the best fits to consider
best_fits_percent: 75
The number of available data points
data_point_num: 33
True if 2D all fits plots for 66% confidence levels
should be plotted. This can be computationally expensive.
plot_2d_66cl_corr: True
True if 2D all fits plots for 95% confidence levels
should be plotted. This can be computationally expensive.
plot_2d_95cl_corr: True
True if 2D all fits plots for 99% confidence levels
should be plotted. This can be computationally expensive.
plot_2d_99cl_corr: True
True if parameter values should be plotted in log space.
logspace: True
True if plot axis labels should be plotted in scientific notation.
scientific_notation: True

Additional examples of configuration files can be found in:

sbpipe/tests/insulin_receptor/

[image: SBpipe native workflow]

Run SBpipe via Snakemake

SBpipe pipelines can also be executed using Snakemake [https://snakemake.readthedocs.io].
Snakemake offers an infrastructure for running computational pipelines using declarative rules.

Snakemake can be installed manually via package manager or using the conda command:

Install snakemake (note: it requires python 3+ to run)
conda install -c bioconda snakemake

SBpipe pipelines for parameter estimation, single/double parameter scan, and model simulation are also implemented
as snakemake files (which contain the set of rules for each pipeline). These are:

	sbpipe_pe.snake

	sbpipe_ps1.snake

	sbpipe_ps2.snake

	sbpipe_sim.snake

and are stored on the root folder of SBpipe. The advantage of using snakemake as pipeline infrastructure is that it offers
an extended command sets compared to the one provided with the standard sbpipe. For details, run

snakemake -h

Snakemake also offers a strong support for dependency management at coding level and reentrancy at execution level.
The former is defined as a way to precisely define the dependency order of functions. The latter is the
capacity of a program to continue from the last interrupted task. Benefitting of dependency declaration and
execution reentrancy can be beneficial for running SBpipe on clusters or on the cloud.

Under the current implementation of SBpipe snakefile, the configuration files described above require the additional
field:

The name of the report variables
report_variables: ['IR_beta_pY1146']

which contain the names of the variables exported by the simulator. For the parameter estimation pipeline,
report_variables will contain the names of the estimated parameters.

For the parameter estimation pipeline, the following option must also be added:

An experimental data set (or blank) to add to the
simulated plots as additional layer
exp_dataset: "insulin_receptor_dataset.csv"

A complete example of configuration file for the parameter estimation pipeline is the following:

simulator: "Copasi"
model: "insulin_receptor_param_estim.cps"
round: 1
runs: 4
best_fits_percent: 75
data_point_num: 33
plot_2d_66cl_corr: True
plot_2d_95cl_corr: True
plot_2d_99cl_corr: True
logspace: True
scientific_notation: True
report_variables: ['k1','k2','k3']
exp_dataset: "insulin_receptor_dataset.csv"

NOTE:
As it can be noticed, a configuration files for SBpipe using snakemake requires less options than the
corresponding configuration file using SBpipe directly. This because Snakemake files is more automated than SBpipe.
Nevertheless, the removal of those additional options is not necessary for running the configuration file using Snakemake.

Examples of configuration files for running SBpipe using Snakemake are in tests/snakemake.

Examples of commands running SBpipe pipelines using Snakemake are:

run model simulation
snakemake -s path/to/sbpipe/sbpipe_sim.snake --configfile SBPIPE_CONFIG_FILE.yaml --cores 7

run model parameter estimation using 40 jobs on an SGE cluster.
snakemake waits for output files for 100 s.
snakemake -s path/to/sbpipe/sbpipe_pe.snake --configfile SBPIPE_CONFIG_FILE.yaml --latency-wait 100 -j 40 --cluster "qsub -cwd -V -S /bin/sh"

run model parameter parameter scan using 5 jobs
snakemake -s path/to/sbpipe/sbpipe_ps1.snake --configfile SBPIPE_CONFIG_FILE.yaml -j 5 --cluster "bsub"

run model parameter parameter scan using 5 jobs
snakemake -s path/to/sbpipe/sbpipe_ps2.snake --configfile SBPIPE_CONFIG_FILE.yaml -j 1 --cluster "qsub"

If the grid engine supports DRMAA, it can be convenient to use Snakemake with the option --drmaa.

See the DRMAA Python bindings for a preliminary documentation: https://pypi.python.org/pypi/drmaa
The following is an example of configuration for DRMAA for the grid engine installed at the Babraham Institute
(Cambridge, UK).

load Python 3
module load python3/3.5.1
alias python=python3
install python drmaa locally
easy_install-3.5 --user drmaa

Update accordingly and add the following line to your ~/.bashrc file:
export SGE_ROOT=/opt/gridengine
export SGE_CELL=default
export DRMAA_LIBRARY_PATH=/opt/gridengine/lib/lx26-amd64/libdrmaa.so.1.0

Snakemake can now be executed using drmaa as follows:

snakemake -s ../../sbpipe_sim.snake --configfile ir_model_stoch_simul.yaml -j 200 --latency-wait 100 --drmaa " -cwd -V -S /bin/sh"

See snakemake -h for a complete list of commands.

The implementation of SBpipe pipelines for Snakemake is more scalable and allows for additional controls and resiliance.

[image: Workflow for SBpipe pipeline using Snakemake]

[image: Workflow for SBpipe pipeline using Snakemake]

[image: Workflow for SBpipe pipeline using Snakemake]

[image: Workflow for SBpipe pipeline using Snakemake]

Configuration for the mathematical models

SBpipe can run COPASI models or models coded in any programming language using a
Python wrapper to invoke them.

COPASI models

A COPASI model must be configured as follow using the command CopasiUI:

pipeline: simulation

	Tick the flag executable in the Time Course Task.

	Select a report template for the Time Course Task.

	Save the report in the same folder with the same name as the model but
replacing the extension .cps with .csv (extensions .txt, .tsv, or .dat are also accepted by SBpipe).

pipelines: single or double parameter scan

	Tick the flag executable in the Parameter Scan Task.

	Select a report template for the Parameter Scan Task.

	Save the report in the same folder with the same name as the model but
replacing the extension .cps with .csv (extensions .txt, .tsv, or .dat are also accepted by SBpipe)

pipeline: parameter estimation

	Tick the flag executable in the Parameter Estimation Task.

	Select the report template for the Parameter Estimation Task.

	Save the report in the same folder with the same name as the model but
replacing the extension .cps with .csv (extensions .txt, .tsv, or .dat are also accepted by SBpipe)

For tasks such as parameter estimation using COPASI, it is
recommended to move the data set into the folder Models/ so
that the COPASI model file and its associated experimental data
files are stored in the same folder.

Python wrapper executing models coded in any language

Users can use Python as a wrapper to execute models (programs) coded in any programming language.
The model must be functional and a Python wrapper should be able to run it via the command python. The program
must receive the report file name as input argument (see examples in sbpipe/tests/). If the program generates a model
simulation, a report file must be generated including the column Time. Report fields must be separated by TAB, and
row names must be discarded. If the program runs a parameter estimation, a report file must be generated including
the objective value as first column column, and the estimated parameters as following columns. Rows are the evaluated
functions. Report fields must be separated by TAB, and row names must be discarded.

The following example illustrates how SBpipe can simulate a model called sde_periodic_drift.r and
coded in R, using a Python wrapper called sde_periodic_drift.py.
Both the Python wrapper and R model are stored in the folder Models/.
The idea is that the configuration file tells SBpipe to run the Python wrapper which receives the
report file name as input argument and forwards it to the R model. After executing, the results
are stored in this report, enabling SBpipe to analyse the results.
The full example is stored in: sbpipe/tests/r_models/.

Configuration file invoking the Python wrapper `sde_periodic_drift.py`
Note that simulator must be set to "Python"
generate_data: True
analyse_data: True
generate_report: True
project_dir: "."
simulator: "Python"
model: "sde_periodic_drift.py"
cluster: "local"
local_cpus: 7
runs: 14
exp_dataset: ""
plot_exp_dataset: False
exp_dataset_alpha: 1.0
xaxis_label: "Time"
yaxis_label: "#"

Python wrapper: `sde_periodic_drift.py`.

import os
import sys
import subprocess
import shlex

This is a Python wrapper used to run an R model.
The R model receives the report_filename as input
and must add the results to it.

Retrieve the report file name
report_filename = "sde_periodic_drift.csv"
if len(sys.argv) > 1:
 report_filename = sys.argv[1]

command = 'Rscript --vanilla ' + \
 os.path.join(os.path.dirname(__file__), 'sde_periodic_drift.r') + \
 ' ' + report_filename

Block until command is finished
subprocess.call(shlex.split(command))

R model `sde_periodic_drift.r`

Model from https://cran.r-project.org/web/packages/sde/sde.pdf

import sde package
sde and its dependencies must be installed.
if(!require(sde)){
 install.packages('sde')
 library(sde)
}

Retrieve the report file name (necessary for stochastic simulations)
args <- commandArgs(trailingOnly=TRUE)
report_filename = "sde_periodic_drift.csv"
if(length(args) > 0) {
 report_filename <- args[1]
}

Model definition

set.seed()
d <- expression(sin(x))
d.x <- expression(cos(x))
A <- function(x) 1-cos(x)

X0 <- 0
delta <- 1/20
N <- 500
time <- seq(X0, N*delta, by=delta)

EA = exact method
periodic_drift <- sde.sim(method="EA", delta=delta, X0=X0, N=N, drift=d, drift.x=d.x, A=A)

out <- data.frame(time, periodic_drift)

Write the output. The output file must be the model name with csv or txt extension.
Fields must be separated by TAB, and row names must be discarded.
write.table(out, file=report_filename, sep="\t", row.names=FALSE)

How to report bugs or request new features

SBpipe is a relatively young project and there is a chance that some
error occurs. The following mailing list should be used for general
questions:

sbpipe AT googlegroups.com

All the topics discussed in this mailing list are also available at
the website:

https://groups.google.com/forum/#!forum/sbpipe

To help us better identify and reproduce your problem, some technical
information is needed. This detail data can be found in SBpipe log files
which are stored in ${HOME}/.sbpipe/logs/. When using the mailing list
above, it would be worth providing this extra information.

Issues and feature requests can also be notified using the github issue
tracking system for SBpipe at the web page:

https://github.com/pdp10/sbpipe/issues.

Developer manual

Mailing list: sbpipe AT googlegroups.com

Forum: https://groups.google.com/forum/#!forum/sbpipe

Introduction

This guide is meant for developers.

Package structure

This section presents the structure of the SBpipe package. The root of
the project contains general management scripts for installing Python
and R dependencies (install_pydeps.py and install_rdeps.r), and installing
SBpipe (setup.py). Additionally, the logging configuration file
(logging_config.ini) is also at this level.

In order to automatically compile and run the test suite, Travis-CI is
used and configured accordingly (.travis.yml).

The project is structured as follows:

sbpipe:
 | - docs/
 | - sbpipe/
 | - pl
 | - report
 | - simul
 | - tasks
 | - utils
 | - scripts/
 | - tests/

These folders will be discussed in the next sections. In SBpipe, Python
is the project main language, whereas R is used for computing
statistics and for generating plots. This choice allows users to run these scripts independently
of SBpipe if needed using an R environment like Rstudio. This can be
convenient if further data analysis are needed or plots need to be annotated
or edited. The R code for SBpipe is distributed as a separate R package and
installed as a dependency using the provided script (install_rdeps.r) or conda.
The source code for this package can be found here:
https://github.com/pdp10/sbpiper and on
CRAN https://cran.r-project.org/package=sbpiper.

docs

The folder docs/ contains the documentation for this project. The user
and developer manuals in markdown format are contained in docs/source.
In order to generate the complete documentation for SBpipe, the following
packages must be installed:

	python-sphinx

	pandoc

	texlive-fonts-recommended

	texlive-latex-extra

By default the documentation is generated in html and LaTeX/PDF. Instruction
for generating or cleaning SBpipe documentation are provided below.

To generate the source code documentation:

cd path/to/sbpipe/docs
./gen_doc.sh

To clean the documentation:

cd path/to/sbpipe/docs
./cleanup_doc.sh

The complete source code documentation for this project is stored in
docs/build/html (html format) and docs/build/latex (LaTeX/PDF format).
A shortcut to the documentation in html format is available at the page
docs/index.html.

sbpipe

This folder contains the source code of the project SBpipe. At this
level a file called __main__.py enables users to run SBpipe
programmatically as a Python module via the command:

python sbpipe

Alternatively sbpipe can programmatically be imported within a
Python environment as shown below:

cd path/to/sbpipe
python
>>> # Python environment
>>> from sbpipe.main import sbpipe
>>> sbpipe(simulate="my_model.yaml")

The following subsections describe sbpipe subpackages.

pl

The subpackage sbpipe.pl contains the class Pipeline in the file
pipeline.py. This class represents a generic pipeline which is extended
by SBpipe pipelines. These are organised in the following subpackages:

	create: creates a new project

	ps1: scan a model parameter, generate plots and report;

	ps2: scan two model parameters, generate plots and report;

	pe: generate a parameter fit sequence, tables of statistics, plots
and report;

	sim: generate deterministic or stochastic model simulations, plots
and report.

All these pipelines can be invoked directly via the script
sbpipe/scripts/sbpipe. Each SBpipe pipeline extends the class
Pipeline and therefore must implement the following methods:

executes a pipeline
def run(self, config_file)

process the dictionary of the configuration file loaded by Pipeline.load()
def parse(self, config_dict)

	The method run() can invoke Pipeline.load() to load the YAML config_file as a dictionary.
Once the configuration is loaded and the parameters are imported, run() executes
the pipeline.

	The method parse() parses the dictionary and collects the values.

report

The subpackage sbpipe.report contains Python modules for generating
LaTeX/PDF reports.

simul

The subpackage sbpipe.simul contains the class Simul in the file
simul.py. This is a generic simulator interface used by the pipelines
in SBpipe. This mechanism uncouples pipelines from specific simulators
which can therefore be configured in each pipeline configuration file.
As of 2016, the following simulators are available in SBpipe:

	Copasi, package sbpipe.simul.copasi, which implements all the methods
of the class Simul;

	Python, package sbpipe.simul.python.

Pipelines can dynamically load a simulator via the class method
Pipeline.get_simul_obj(simulator). This method instantiates an
object of subtype Simul by refractoring the simulator name as parameter.
A simulator class (e.g. Copasi) must have the same name of their package
(e.g. copasi) but start with an upper case letter. A simulator class
must be contained in a file with the same name of their package (e.g.
copasi). Therefore, for each simulator package, exactly one simulator
class can be instantiated. Simulators can be configured in the
configuration file using the field simulator.

tasks

The subpackage sbpipe.tasks contains the Python scripts to invoke the single SBpipe
tasks. These are invoked by the rules in the SBpipe snakemake files. These snakemake
files are:

	sbpipe_pe.snake

	sbpipe_ps1.snake

	sbpipe_ps2.snake

	sbpipe_sim.snake

and are stored on the root folder of SBpipe.

utils

The subpackage sbpipe.utils contains a collection of Python utility
modules which are used by sbpipe. Here are also contained the functions
for running commands in parallel.

scripts

The folder scripts contains the scripts: cleanup_sbpipe and
sbpipe. sbpipe is the main script and is used to run
the pipelines. cleanup_sbpipe.py is used for cleaning the package
including the test results.

tests

The package tests contains the script test_suite.py which executes
all sbpipe tests. It should be used for testing the correct installation
of SBpipe dependencies as well as reference for configuring a project
before running any pipeline. Projects inside the folder sbpipe/tests/
have the SBpipe project structure:

	Models: (e.g. models, COPASI models, Python models, data sets directly used
by Copasi models);

	Results: (e.g. pipelines results, etc).

Examples of configuration files (*.yaml) using COPASI can be found in
sbpipe/tests/insulin_receptor/.

To run tests for Python models, the Python packages numpy, scipy, and
pandas must be installed. In principle, users may define their Python models
using arbitrary packages.

As of 2016, the repository for SBpipe source code is github.com. This
is configured to run Travis-CI every time a git push into the repository
is performed. The exact details of execution of Travis-CI can be found in
Travis-CI configuration file sbpipe/.travis.yml. Importantly, Travis-CI
runs all SBpipe tests using nosetests.

Development model

This project follows the Feature-Branching model. Briefly, there are two
main branches: master and develop. The former contains the history
of stable releases, the latter contains the history of development. The
master branch contains checkout points for production hotfixes
or merge points for release-x.x.x branches. The develop branch is used
for feature-bugfix integration and checkout point in development. Nobody
should directly develop in here.

Conventions

To manage the project in a more consistent way, here is a list of conventions
to follow:

	Each new feature is developed in a separate branch forked from develop.
This new branch is called featureNUMBER, where NUMBER is the number
of the GitHub Issue discussing that feature. The first line of each
commit message for this branch should contain the string Issue #NUMBER
at the beginning. Doing so, the commit is automatically recorded by the
Issue Tracking System for that specific Issue. Note that the sharp (#)
symbol is required.

	The same for each new bugfix, but in this case the branch name is called
bugfixNUMBER.

	The same for each new hotfix, but in this case the branch name is called
hotfixNUMBER and is forked from master.

Work flow

The procedure for checking out a new feature from the develop branch
is:

git checkout -b feature10 develop

This creates the feature10 branch off develop. This feature10 is
discussed in Issue #10 in GitHub.
When you are ready to commit your work, run:

git commit -am "Issue #10, summary of the changes. Detailed
description of the changes, if any."
git push origin feature10 # sometimes and at the end.

As of June 2016, the branches master and develop are protected and a
status check using Travis-CI must be performed before merging or pushing
into these branches. This automatically forces a merge without
fast-forward.
In order to merge any new feature, bugfix or simple edits into
master or develop, a developer must checkout a new branch and,
once committed and pushed, merge it to master or develop using a
pull request. To merge feature10 to develop, the pull request output
will look like this in GitHub Pull Requests:

base:develop compare:feature10 Able to merge. These branches can be
automatically merged.

A small discussion about feature10 should also be included to allow
other users to understand the feature.

Finally delete the branch:

git branch -d feature10 # delete the branch feature10 (locally)

New releases

The script release.sh at the root of the package allows to release
a new version of SBpipe or update the last github tag. This script also
creates and uploads a new SBpipe package for Anaconda Cloud.

The following two sections describe how to release a new version for SBpipe,
manually.

How to release a new tag

When the develop branch includes all the desired feature for a
release, it is time to checkout this
branch in a new one called release-x.x.x. It is at this stage that a
version is established.

record the release add a tag:
git tag -a v1.3 -m "SBpipe v1.3"

transfer the tag to the remote server:
git push origin v1.3 # Note: this goes to a separate 'branch'

see all the releases:
git show

How to release a new SBpipe conda package (Anaconda Cloud)

This is a short guide for building SBpipe as a conda package.
Miniconda must be installed. In order to proceed, the package conda-build must be installed:

conda install conda-build

DON'T FORGET TO SET THIS so that your built package is not uploaded automatically
conda config --set anaconda_upload no

The recipe for SBpipe is already prepared (file: meta.yaml). To create the conda package for SBpipe:

cd path/to/sbpipe
conda-build conda_recipe/meta.yaml -c pdp10 -c conda-forge -c fbergmann -c defaults

To test this package locally:

install
conda install sbpipe --use-local

uninstall
conda remove sbpipe

To upload the package to Anaconda Cloud repository:

anaconda upload ~/miniconda/conda-bld/noarch/sbpipe-x.x.x-py_y.tar.bz2

Miscellaneous of useful commands

Git

Startup

clone master
git clone https://github.com/pdp10/sbpipe.git
get develop branch
git checkout -b develop origin/develop
to update all the branches with remote
git fetch --all

Update

ONLY use --rebase for private branches. Never use it for shared
branches otherwise it breaks the history. --rebase moves your
commits ahead. For shared branches, you should use
`git fetch && git merge --no-ff`
git pull [--rebase] origin BRANCH

Managing tags

Update an existing tag to include the last commits
Assuming that you are in the branch associated to the tag to update:
git tag -f -a tagName
push your new commit:
git push
force push your moved tag:
git push -f --tags

rename a tag
git tag new old
git tag -d old
git push origin :refs/tags/old
git push --tags
make sure that the other users remove the deleted tag. Tell them(co-workers) to run the following command:
git pull --prune --tags

removing a tag remotely and locally
git push --delete origin tagName
git tag -d tagName

File system

git rm [--cache] filename
git add filename

Information

git status
git log [--stat]
git branch # list the branches

Maintenance

git fsck # check errors
git gc # clean up

Rename a branch locally and remotely

git branch -m old_branch new_branch # Rename branch locally
git push origin :old_branch # Delete the old branch
git push --set-upstream origin new_branch # Push the new branch, set local branch to track the new remote

Reset

git reset --hard HEAD # to undo all the local uncommitted changes

Syncing a fork (assuming upstreams are set)

git fetch upstream
git checkout develop
git merge upstream/develop

Source code

Python modules

Index

 _static/file.png

_static/down-pressed.png

_static/down.png

_static/up-pressed.png

_static/minus.png

_static/plus.png

_static/up.png

_images/sbpipe_pe_snake_dag.png
rep: 1 ds: insulin_receptor_dataset.csv rep: 2
sbpipe_parameter_der:ls;?iz;naIysis_cl66_ﬁts_estim sbpipe_parameter_der:ls;?iz;naIysis_cl99_ﬁts_estim (sbpipe_parameter_der:ls;ii’?l}zinaIysis_cl66_ﬁts_estim] sbpipe_parameter_der:ls;?iz;naIysis_cl95_ﬁts_estim ‘ sbpipe_sampledvﬁ?ﬂ)\llea_rz;r:]akllyji(sz_cI66_ﬁts__estim sbpipe_parameter_der:ls;?izinaIysis_cl99_ﬁts_estim sbpipe_sampledvﬁ?ﬂ)\llea_rz;r:]akllyji(sz_cI95_ﬁts__estim
i sbpipe_pe_latex report ;

_static/comment-bright.png

_static/comment-close.png

_static/ajax-loader.gif

_static/comment.png

_images/sbpipe_ps1_snake_dag.png
rep: 2 rep: 1

nav.xhtml

 Table of Contents

 		
 SBpipe documentation

 		
 User manual

 		
 Metadata

 		
 Introduction

 		
 Installation

 		
 Requirements

 		
 Installation on GNU/Linux

 		
 Installation on Windows

 		
 Test SBpipe

 		
 How to use SBpipe

 		
 Run SBpipe natively

 		
 Run SBpipe via Snakemake

 		
 Configuration for the mathematical models

 		
 How to report bugs or request new features

 		
 Developer manual

 		
 Introduction

 		
 Package structure

 		
 docs

 		
 sbpipe

 		
 scripts

 		
 tests

 		
 Development model

 		
 Conventions

 		
 Work flow

 		
 New releases

 		
 Miscellaneous of useful commands

 		
 Git

 		
 Source code

 		
 Python modules

_images/sbpipe_workflow.png
YdML configuration file

//W
(; COPASI
1 run a mathematical

model N times
[local, SGE, LSF]

START

|

PLE (sampled)

Jata gene ration s wiiaisiiad 1 =CL 99%
> e ’
-— /e+01 - : =CL 95%
% 1 =CL 66%

6e+01 -
\6 \7 \é) 0@
Dat VS QO/ G\O/Q\O/ %
ata analysis o010
IR_beta_pY1146

|

;'10.0— e o
E 751 ° S
Report generation E g;g/f;\N 8
3 0.0 - =

BN
Time [min]

END

& python h .

Model
coded
N any
language

obj val < CL95%

-1e-01 - .
o2 R ¢
LY o ¥
<\I ¥ \&’* pi
’0.0 "J)V ol .
Yy) 4 <+ y
° .A\ o.'..
° _ogh
0 e
o
.
()
o o

é -2e-01 -
o '36'01 N .:.'::.. A 3
D -4e-01 =% R
® R 2 B

— -9e-01 9 Tiew

75
70
65
60

log10(k1)
IR _beta pY1146

Time [min]

Snakemake friendly!

_images/sbpipe_ps2_snake_dag.png
rep: 2 rep: 1

_images/sbpipe_sim_snake_dag.png
rep: 2 rep: 1
(sbpipe_sim_analysis_summarise_data) (sbpipe_sim_analysis_ summarise_data)
var: IR_beta var: IR_beta pY1146

